
1 / 39

Xpos're 2.0

Users Guide
April 2012

2 / 39

Introduction

Xpos're: authoring enhanced publications
An enhanced publication (EP, or rich Internet publication, or shortly a RIP) is a regular scholarly publication
with additional material, like data, models, algorithms, illustrative images, metadata sets or post-publication
information such as comments or rankings. There is a growing interest in publishing results together with
the underlying data and interactive facilities. This enables the reader to explore research objects, to
experiment with the included data sets and to validate the author's conclusions.

The Xpos're tools are designed for authoring and displaying EPs. The software comprises a Flash-based
document reader for text encoded in XML, and a set of extensions (plug-ins) that extend the basic
functionality of the reader. The extensions are used to display specific types of multimedia with additional
functionality, such as zoomable images, videos and interactive maps.

The document reader can also generate output in HTML, in two flavors, namely a slide based version that
uses Javascript, and a plain HTML text (single page), which can be used to create e-books with the help of
programs such as Calibre. Xpos're is very flexible and not bound to the common publication structure of
specific disciplines.

Interactivity means reading on-line, which requires a suitable text: not too long, easily scanned by the
human eye and preferably with different levels of detail. Essentials are communicated first, and detailed
information should be available for those who want to learn more. Xpos're encourages but does not enforce
such a writing style. Each slide may start with a short summary, followed by the core message and optional
continuation text of any length. An other feature of EPs is integration: related parts of the text are linked to
each other, discussions on findings are connected to the related data, and vice versa. Xpos're supports
these requirements by various types of internal links.

An Xpos're publication can be used as extra "showcase" on a personal or institutional website in
combination with a PDF file of an article, which has been published elsewhere. Each slide can be linked to
the related page in the PDF, while the added data and functionalities provide a deeper insight in and
greater visibility of the research project.

Conventions in this documentation

In program code and in XML text underlined items in black are placeholders, to be replaced with
appropriate terms.

http://www.surffoundation.nl/en/themas/openonderzoek/verrijktepublicaties/Pages/Default.aspx
http://calibre-ebook.com/

3 / 39

Features

1. Sustainability: the publication text is highly sustainable. Its structure and interactivity is defined in
XML, a widely accepted standard for encoding content. The input of the Xpos're extensions is in
XHTML.

2. Cross-platform: the XML-text is primarily rendered in Flash, which ensures a high graphic quality and
reliable interactivity. HTML is supported for non-Flash platforms and for users who do not want to use
Flash.

3. Flexibility: an author can define the complete layout (like size and position of the text and the visual
elements) through XML tags.

4. Referencing: normal hyperlinks can be inserted into the text and parts of the publication can be
connected by cross references (end notes, table of contents, links to other text sections).

5. Extensible architecture: The functionality of the document reader itself is simple. Essentially, the
application is a special browser, which allows the user to go through the set of slides that make up the
enhanced publication, and to jump from one place to another using hyperlinks. However, this basic
functionality can be extended by means of additional widgets (extensions), for example an image
gallery, interactive map or a viewer for a database table. Most of the extensions that come with
Xpos're, are also small Flash programs. However, HTML applications can be used as well and
displayed as an overlay on top of the reader. Extensions can be downloaded and included by simply
inserting a hyperlink or custom button. There is no installation procedure.

6. Client-side: All operations are on the local computer; there is no content management system on the
server or other back-end system. This gives the author complete control over his/her enhanced
publication. (S)he can create the content, download extensions as required, upload everything, which
completes the authoring process.

7. Easy learning curve: users with basic knowledge of HTML and XML can create their own enhanced
publication using an XML editor and basic image processing software. The download package contains
a simple demo, which is a good starting point. The Xpos're website contains more advanced examples,
which can be inspected to learn more.

8. Semantics: To retrieve publications from the web, semantics are to be accessible to search engines.
This is even more true for enhanced publications, which carry data sets, additional illustrations and
interactive modules. To enhance findability RDF-metadata (in the format of OAI-ORE) are added to the
enhanced publication. These metadata can be generated on basis of the XML-text prepared for the
document reader.

9. Interoperability with other software: The document reader will follow current trends in software
development for enhanced publications and is designed to work together with other packages for data
display.

10. Multi-discipline: The document reader does not make any assumptions on the publication structure.
The system is particularly developed with the publication genres of the humanities in mind. However it
can support other disciplines as well.

http://www.openarchives.org/ore/

4 / 39

Document reader

Textbrowser
The main program is the document reader (Textbrowser). It displays an enhanced publication on the user's
computer and it supports the authoring process. It acts as a master, which calls certain extension programs
as slaves. These extensions provide additional functionality such as the display of video's, image galleries
and interactive spreadsheets.

The textbrowser, showing a slide with the extension Image Viewer activated.

All data are kept outside the Flash programs (this in contrast with the common association with a Flash
application as a movie in which everything is embedded). Data are first downloaded and processed before
the publication is displayed, which guarantees good performance. This pertains in particular to images,
which require much more download time than text. This so called preloading may take several seconds
(you will see a progress bar, indicating the percentage of downloaded data). Next time loading is much
faster, because all these data are stored in the cache of the browser on your computer.

Like all Flash applications embedded in web pages, the document reader requires a browser plug-in.
Nowadays this so-called Flash reader is already installed on the majority of computers; otherwise it can be
downloaded for free from Adobe.

http://get.adobe.com/flashplayer/

5 / 39

Slide as basic unit
A slide is the basic unit of display in Xpos're. It has three areas. There are two text blocks and a list of
visuals:

• Text1 is supposed to contain the main text.

• Text2 subsidiary text.
Alternatively, both text blocks can be used to create two text columns. If text length exceeds the size of
the text block defined, two scroll buttons will appear. However, it is recommended, for aesthetic
reason,s to avoid this situation and to use continuation text instead of scrolling. Each slide can have
one continuation text, which is accessed through an internal hyperlink.

• By default visuals are displayed as a list, which can be either horizontal or vertical, depending on the
template used. However, the author is free to position in individual image elsewhere on the slide by
specifying its coordinates.

Normally, visuals are stored in a subdirectory of the folder where the publication itself resides, but also
images on the Web can be included. This applies also to images used in native Xpos're extensions,
such as the image gallery and the image viewer. Each visual may have a caption (text explaining the
picture). The caption is technically part of the visual.

In case of a vertical list, all visuals are resized to the specified width. It is left to the author to determine
the right number of visuals per slide. Images do not need to be of the same size or aspect ratio.
Although the program can resize images rather well, a big difference between the original size and the
display size of an image is to be avoided: large images take more time to download and resizing is less
precise than resampling (the resized image may not look nice). So, the width and height of the images
should come close to their display size.

For technical details, see topic Adding a slide

6 / 39

Input and output

Input
Textbrowser takes two XML files as input:
1. The publication text, in case of the demo: Simple_demo.xml. This must be validated using

Publication.dtd.
2. The file Textbrowser.xml which contains instructions how Textbrowser should handle the text and

where to find things. For example, it contains the path to the folder where the images are stored (e.g.
visuals/). This must be validated using Textbrowser.dtd.

In addition the images referenced in the publication text are also part of the input.

Example of XML-input (Simple_demo.xml)

7 / 39

Structure of the text
The text of the enhanced publication is encoded in XML and is divided into slides. A slide is comparable
with a slide in PowerPoint except that it contains full text in stead of key words and short phrases.

Each slide contains the text of a single topic, equivalent to a (larger) subsection in a printed paper, plus
some metadata. It comprises the following elements:

• The title of the slide.

• The visuals to be displayed next to the text block. Visuals may be real images of type JPEG, PNG or
GIF, or a Flash-file (SWF), which is treated as a visual as well. In some cases, a SWF can be a handy
format for a graphic illustration, provided the author can dispose of a Flash authoring program.

Note: the SWF must be an ActionScript3 file (ActionScript2 files are not correctly loaded).
Do not use SWF-visuals if you want to generate HTML-versions; SWF files are not displayed in the
generated HTML text.

• Optional format instructions: where is the text to be displayed on the screen, to what size are the
visuals to be scaled etc. (if the author wants to deviate from the template).

• The number of the related PDF-page, if the enhanced publication is accompanied with the full text of
the printed publication in a PDF-file.

Layout
The content's appearance is defined as follows:

1. The style (font family, size, hyperlink style etc.) through a related style sheet (CSS), for the demo:
RIP-Flash.css.

2. The layout (where goes what on the screen) in defined in two ways:
o Through templates, specified in Textbrowser.xml. Currently, three templates are predefined

(but you are free to define and add your own):
 vleft: visuals left, and text right
 vright: visuals right, text left. Note, that vright is the default template.
 cols: no visuals, but two text columns

o Within the publication text, through attributes, such as x, y, width.

The templates define the default values for several attributes. The template may vary from slide to slide: the
desired template is specified through an attribute of the <slide> tag. Irrespective of the template chosen
an author may add attributes to text and visuals or change attribute values where appropriate, which
makes, that these elements can be placed anywhere on the slide as required.

8 / 39

Cross platform
There are several reasons why a HTML version is wanted: one may dislike the textbrowser's user interface,
hardware may not support Flash, or a more accessible / printable document is required. Xpos're offers two
ways to convert the EP to HTML:
1. HTML slides: this generates a look-alike of the Flash version, with almost the same functionality. It is

based on CSS and Javascript.
2. Plain HTML: this produces a single HTML document with a minimum of formatting and only based on

CSS (no Javascript). This code can be used as input, for example, for a program as Calibre to create
an e-book file.

The HTML-version of the slides generated by the textbrowser.

Note: Both of them, the HTML slides and the plan HTML version, use files included in the subdirectory
RIP-HTML: do not forget to copy this folder when you install the package.

http://calibre-ebook.com/

9 / 39

Extending the functionality
The basic functionality of the document reader consists of browsing through the set of slides that make up
the enhanced publication, and jumping from one place to another, using hyperlinks. However, this
functionality can be extended in two ways:
1. The textbrowser can open native Xpos're extensions (to be downloaded from the Xpos're website)

such as an image gallery, interactive map or a table viewer. Using extensions is simple: the author
inserts a special link (so called event-link) into the text; when the reader clicks on the link, the extension
is displayed. Most of these extensions are also Flash programs and are displayed as pop-ups within
the textbrowser.

2. There many web-based applications for displaying numeric data, maps, time lines, image galleries etc.
Just like in an HTML-text the author can insert hyperlinks in the XML code to link to any other web
document and to display it in a new window or tab. A minor drawback of this method is the separation
of illustrative data from the main text. Up to a certain extent this can be redressed by using overlays.
Xpos're uses GreyBox for this purpose and provides a special event-link to overlay web pages and
images on top of the textbrowser.

Note: The files in subdirectory greybox are required for this purpose. Do not forget to copy this
folder when you install.

Displaying a picture as overlay on top of the textbrowser.

Note that the transparency is not rendered correctly by all browsers.

http://orangoo.com/labs/GreyBox/

10 / 39

How to use Xpos're
Currently most scholarly journals are still rather conservative in set-up. Publishing an on line version of the
publication in PDF format is quite common (even for printed journals). In addition, some publishers have a
separate multimedia section on their website. As a rule all publications have to comply with the journal's
template, so, for extras authors are completely dependent on the facilities offered by the journal of their
choice.

Xpos're may be an attractive option for an additional publication of an article on the author's own website or
on that of the faculty. This makes it possible to include much more material than a regular journal
publication allows and it offers a chance to reach a broader audience.

One may do one of the following:
1. Publish a shorter version of the article, and link each slide to the related page in the PDF of the original

publication. In this option the emphasis is on the extras, such as images, videos, data.
2. Re-publish the entire original text (assumed that it is allowed by the copyright rules of the journal in

which it has appeared) enhanced with additional material. Also in this case synchronization of slides
and PDF pages can be useful.

In the current situation credits are primarily earned by publishing in highly ranked journals. However
exposure of your work may be greatly enhanced through a "show case" as Xpos're can produce.

11 / 39

Sustainability

The volatile Web
One of the problems of the Web is its volatile character, which is particularly a problem with enhanced
publishing. How can we make sure that the entire enhanced publication is still legible and completely
functioning over ten, twenty or more years? PDF is so widely used that we don't need to have serious
concerns about this format.

Meta data and persistent identifiers
Sustainability of web publications has different aspects. One of them is the use of persistent identifiers and
adequate metadata to ensure the coherence and findability of text, data and multimedia. Xpos're supports
the generation of a so-called resource map, encoded in RDF (OAI-ORE, see Open Archives Initiative),
which meets these semantic requirements. This resource map can be automatically generated by means of
an XSLT file, which is to be downloaded from the Xpos're website.

However, the metadata are only a part of the problem. The display of additional material requires dedicated
software, which is not guaranteed for the (distant) future or does not run on certain platforms -- most
well-known is the fact that Flash is not supported on an iPad. The creation of interactive spreadsheets may
require, that data are uploaded to a third party website. Are we sure that the service of rendering these
data will not be discontinued at a certain moment?

The principle of 'gentle fall-back'
We can not solve all these insecurities beforehand, however some precautionary measures can and should
be taken. Xpos're itself is based on the principle of gentle fall-back: all input data are in a basic format that
can be displayed by a web browser without special software. If a more advanced software solution does
not work, it can be switched off, which means that the reader falls back on a more basic rendering. That's
also why the document reader can generate two different flavors of HTML, one more advanced and one
very basic, even without Javascript.

Other examples:

• The use of overlays is optional, not only for the author, but also for the reader. The user can switch off
this facility in Preferences; in that case the overlayed document is simply displayed in a separate
window.

• The HTML slides allow the use of Flash extensions such as the image viewer. When Flash is not
supported, a reader can deactivate the use of Flash extensions and the image will simply appear in a
new tab.

• Moreover, all input of the native Xpos're extensions is basic HTML, so this enhancement can be
displayed even without the textbrowser.

What authors should do
So Xpos're has taken its share in the precautions. However, the author has his/her own responsibility.
There is a wealth of interesting software for displaying added material on the Web: generators for image
galleries, slide shows, time lines, interactive maps, interactive spreadsheets and graphs. Xpos're slides can
get linked to such web documents and display them, for example, in overlay mode, but to keep it safe, the
author has to add also extra links to the data in a sustainable format. For example, in this approach an
interactive spreadsheet displayed through EditGrid needs an accompanying link to the same data in tab or
comma separated format, preferably stored on a server controlled by the author or by the organization with
which (s)he is affiliated.

http://www.openarchives.org/ore/
http://www.editgrid.com/

12 / 39

Getting started

Downloading
The software can be downloaded from the Xpos're website: http://xposre.nl (note, that the apostrophe is
missing in the URL!). The basic package contains a simple demo (Simple_demo.xml) with pseudo-text,
starting with "Lorem ipsum". The 'lorem ipsum' text is typically a section of a Latin text by Cicero with words
altered, added and removed that make it nonsensical in meaning and not proper Latin; it is not intended to
have any meaning. The whole demo consists of this kind of filler text, which is commonly used to
demonstrate the graphic elements of a document and the visual presentation, such as font, typography,
and layout.

The download package contains only one native Xpos're extension: the image viewer. More extensions can
be downloaded from the Xpos're website when required.

Installing Xpos're
Installation is very simple: unzip the download file and copy its content to the hard disk of your computer.
Keep the directory structure as present in the zip file.

Make sure that your computer has a recent Flash player installed:

• for a check, go to http://www.adobe.com/software/flash/about/ and downloading,

• or for downloading, go to: http://get.adobe.com/flashplayer/

Getting started
You need a text-oriented XML editor to prepare input data and to view the various XML files. There are
different sorts of XML editors: some display the XML text only as a tree, which is not convenient for textual
publications. An other important feature is validation against a DTD, which is not supported by every XML
editor. The Xpos're website contains more information about useful software. Most commercial editors
come with a trial version and offer low prices academic license. An acceptable free XML editor is Jedit,
provided you download and install the XML extensions for this program.

The following steps will help you to get started:

Explore the demo:
1. Open the file Textbrowser.html in your browser.
2. Browse through the slides using the arrow keys on screen or the arrow keys on your keyboard.
3. Click on links in the text and the clickable images, indicated by the magnifier (note that the image, not

the magnifier itself is clickable).

IMPORTANT: For safety reasons the Flash player will not open normal hyperlinks to other web documents
when you are working off-line as in this exploration. Nothing will happen when you click on a link. You must
first tell the Flash player that the folder that contains the Flash file, is "trusted". Do this:
1. Open Textbrowser.html in your browser.
2. Right click somewhere on the Flash application: the context menu appears.
3. Select 'Global Settings...'
4. Click on tab 'Advanced'
5. Scroll down to the button 'Trusted Location Settings'
6. Add the folder that you want to be considered as trusted (all subfolders are automatically trusted as

well)

Experiment: modify the demo:
1. Make a backup of the file Simple_demo.xml.
2. Open this file in your XML browser.
3. Modify existing text in the <text1> tag of a slide.
4. Validate the modified XML text. If the XML text is not valid, you will get later an error message in the

textbrowser.

http://get.adobe.com/flashplayer/
http://www.adobe.com/software/flash/about/%20and%20downloading
http://get.adobe.com/flashplayer/
http://www.jedit.org/

13 / 39

5. Reload (refresh) Textbrowser.html in your browser and view the results.
6. Replace an existing image. Store the new image in the folder visuals. If the image is not found, an error

message is displayed.
Note that the new image does need to be of exactly the same size. Xpos're will resize image. However,
you will notice that in some cases prior resizing / resampling the image will give better results.

7. Add a new slide to the text in your XML editor. You may copy an existing slide, but make sure that you
change the id-attribute of the slide. All id-values must be unique. See also topic Adding a slide.

8. Go back to step 4.

Uploading the enhanced publication to a web server is simple as well: copy all files to the public HTML
folder of the server.

14 / 39

User interface

The button bar

Button bar of the Flash version of the textbrowser.

• Browsing: to move from one slide to an other use the arrow buttons on the navigation bar or the

related keys of the keyboard. Do not forget to select the document reader first (click on the reader area)
before pressing the button, otherwise it will not work:

o Arrow Left or Page Up: previous slide
o Arrow Right or Page Down: next slide
o Double Arrow Left or up-arrow or Home: first slide
o Double Arrow Right or down-arrow or End: last slide

• Jumping:

o Use the drop down box in the button bar, or

o the table of contents to move quickly from one slide to an other. The table of contents is a
regular slide (with the fixed id="toc"), which must be explicitly provided by the author. If it is
missing, the Table of Contents button is disabled.

o Navigation links: the author may have inserted hyperlinks in the text to other slides. These links
are of the same type as the links in the table of contents.

Back-button of the browser: be aware, that you can not use the browser's previous and next button
to navigate through the slides. The browser buttons are used to navigate through web pages. The
document reader is an application embedded in a single web page and, therefore, requires its own
navigation buttons.

• Preferences: This button opens the Preference window:

o 'Switch between authoring and reading mode': In reading mode the buttons after 'PDF' are
hidden.

o 'Use overlays for external links': if checked, GreyBox overlays are used, otherwise the
overlayed document is displayed in a new window.

o 'Show help with measuring tool': if checked a text panel with instructions how to move and to
resize the measuring tool is displayed on activation. It always disappears as soon as the
measuring tool is moved (see below).

• PDF: This buttons opens the associated PDF file provided that
1. this file is correctly specified in Textbrowser.xml (otherwise this button is hidden) and
2. the related PDF page is specified in the slide in the publication XML file (e.g. in

Simple_demo.xml)

• Format: This displays an outline of the layout elements of a slide:

15 / 39

Showing the format of a slide: size and position of layout elements.

• Measuring: This displays the measuring tool, i.e. a transparent colored rectangle, which can be moved

around over the slide and resized in order to measure existing objects such as text blocks and images
or to find a new position and space for these elements. Unless turned off in Preferences, it appears
with a text on top explaining the keys to be used with this tool. Position and size are displayed at the
bottom of the screen in a format that can be directly copied and pasted into the XML code.

The measuring tool activated.

16 / 39

• Source: The XML source text is opened in an other browser window.

• HTML Slides: This opens a new window with the code of the HTML slides version.

• HTML Plain: This opens a new window with the code of the plain HTML version.

Other features

Large images

Some images displayed are clickable; they have a magnifier in the left upper corner. On click the image
viewer extension is displayed, which has a zoom option.

Windows

The document reader has its own draggable pop-up windows (for example for notes and literature
references), which can be closed by clicking on the x-button. All open windows are closed, when the user
navigates to an other slide.

Printing

Use the browser's print button to print or the plain HTML-version, which is most suitable for printing the text
as a whole.

Size of the application and screen size

The application has a fixed size (950 x 720 pixels), which fits well on an average computer screen and
beamer display. Nevertheless in some cases the Flash area may not be completely visible, which enforces
scrolling. To make the Flash area completely visible, you may do one of the following:

1. Hide some browser toolbars to enlarge the display space.
2. Switch to the browser's full screen mode (recommended).
3. Zoom out in the browser.

17 / 39

Authoring

Prerequisite knowledge and skills
• Basics of XML en HTML:

o Understanding XML fundamentals
o Being able to use an XML-editor
o Understanding a DTD and validating an XML-text
o Formatting in HTML (<p>, , , <style>, etc.)

o Understanding cascading style sheets

• Simple image processing:
o Capturing screen shots
o Enhancing image quality (brightness, sharpness etc.)
o Cropping images
o Resizing and resampling images
o Adding text and symbols (shapes) to images

Software
For authoring content you need some additional software:

• A text-oriented XML-editor that can validate the text against a DTD.

• Image processing software to create and to modify images.

Planning
Authoring requires not only some tools, but also a sound planning. The best starting point is an already
published text. Select a publication, together with multimedia material and data. Take the following steps as
preparation for authoring the enhanced publication:
1. If it has not yest a suitable subdivision divide the publication into sections. An entire section or a

summary of a section becomes the text of a slide. If it does not fit on a slide, you may use continuation
text (<more> tag).

2. Gather illustrations in high quality, preferably one or more for each slide. In most cases, two illustration
will fit on a slide, however, you can display more by means of an image gallery or by links to external
images.

3. Consider data to be added to the publication.
4. Although any number of slides can be added, it is a good idea to make the publication not too long.

Working with a very long XML text may be inconvenient. Preloading a large number of images will take
time and consume memory space. Instead, consider more publication files when the text is, for
example, as large as a book and bring them together in an HTML file, using a frame set. Then each
"chapter" may be opened when required.

18 / 39

Defining the publication

1. The simple demo may be an easy starting point: modify and extend the existing text (see Getting
started).

2. Specify the new enhanced publication (its metadata) in Textbrowser.xml and validate the text
against Textbrowser.dtd:

The section in Textbrowser.xml where the enhanced publication is specified.

3. You must work in 'authoring mode', in which all buttons on the button bar are visible.

o In 'reading mode' only buttons required for reading are displayed.
o 'Protected mode' is similar to 'reading mode' except for the fact that the user can not switch to

authoring mode.

19 / 39

Adding a slide
1. Open your publication text, or, if you start from the demo, Simple_demo.xml.
2. Slide: A slide is defined in the tag <slide> (all slides are contained in the tag <slides>; do not

confuse both). The tags embedded in <slide> are optional, except <title>. Most tags are to be
added in a fixed order; see DTD for details. Most XML editors are helpful by displaying a list of allowed
tags in a particular editing context.
The <slide> tag has two attributes:

o id: the identifier, whose value must be unique for the current text.

o template: optional, if omitted the default template vright is used.

The value of id must start with a letter or underscore, and may contain letters, digits, dots, hyphens
and underscores.

3. PDF-page: the optional tag <pdfPage> contains the number of the related page in the PDF file (that

contains the printed version of the publication). Note:
o You must have defined the url of the PDF in Textbrowser.xml

o A click on the PDF button will open the PDF file displaying the page specified, at least in most
browsers (this has nothing to do with Xpos're, but depends on the PDF browser plug-in).

4. Title: the tag <title> takes the title of the slide (required).

5. Visuals: the <visual> tag has optional attributes to define size and position of the image: x, y, width,
height, border. If omitted, the default values defined in the template are used. Using the optional
attributes allows to deviate from the default size and position. In templates with a vertical image list, the
image size depends on the width of the list. By adding a different x and y value an image can be
positioned on any place on the slide. To change the display size, specify either width or height. The
image is then resized while the aspect ratio is preserved.

o <url>: the URL of the image (required). The document reader will automatically add the
image path as defined in the project through tag <visuals>. So, here the simple file name is
sufficient. Also images on the Web can be used by specifying the full url (starting with
http://...)

o <onClick> (optional): empty tag, with attribute href. This takes the URL, either an external
link (http://...) or an internal link (event:...). When this tag is present, a visual
becomes clickable and a magnifier symbol is displayed in the upper left corner. Clicking on an
image is supposed to display a larger version of the current image, either form the web or
through the image viewer widget.

o <cap> (optional, but strongly recommended): the caption of the visual.

o <creator> (optional), to be used in the resource map.

6. Text: just like visuals texts may have attributes to define a deviating size and position: x, y, width,
height. If omitted, the default values as defined in the template are used. See for border color and
background color the topic Specials.

o <text1>: the main text block (optional) or column 1.

o <text2>: additional text (optional) or column 2.

o <more>: use this tag for text continuation. The tag requires a valid XML id. You can display the
text contained in <more> by inserting an internal link, for example, in text1, with a href that
refers to the <more> element.

Note:
o Avoiding scrolling looks better, so the slide text should ideally fit in the text1 and text2. If the

text is longer, scroll buttons will appear, however, it is recommended to use continuation text in
such a case.

20 / 39

o Inside the text blocks regular HTML tags can be used for basic formatting, like <p>, ,
<h1>, etc. For details see Publication.dtd.

o The style of the text (font family, font size, color etc.) is defined in the cascading style sheet the
filename of which is specified in Textbrowser.xml.

o In addition to visuals you can also embed an image in the text, just like in HTML. However, the
text alignment is not so nice in Flash and these images are not preloaded. Only embedding
images at the end of the text works well. Store these images also in the visuals directory, but
add the relative image path (visuals/myImage.jpg) in the scr-attribute.

It is recommended to validate the text frequently during editing using Publication.dtd.

21 / 39

Links and buttons

External links
1. These are regular hyperlinks to a web page ("http://...") or to the HTML document in your

project (supply the relative path).
2. These links can be added by .
3. You can specify existing frame or iframe as target.

Internal links (event-links)
Internal links use the so-called event-protocol. The syntax is:
, where:

o verb is an action to be performed when the user clicks on the link.
o object is the object on which the action is performed (the parameter may be composite, see

table below)
o parameter influences the way in which the action is executed (the parameter may be

composite)

An example of an internal link is:

Tulips

which adds an image viewer (an extension) to the textbrowser, and displays the image file. Note that
the requested image must be in the visuals folder.

List of verbs to be used with the event-protocol:

Verb Object Parameter Meaning

goto slide-id none Jumps to an other slide:
Questions

ref ref-id none Opens the references window, displaying the text of the
<ref> having the id ('book1') specified. Here an example of
an (end) note:
[1]

The demo style sheet defines a CSS-attribute .class ref to
render the end note reference [1] in red.

note note-id none Opens the note window, displaying the end note text:
[1]

more none none Opens the continuation text of the current slide in a new
window. Note that each slide can have only one
continuation text.

add url of an
extension

depends on
extension,
mostly an url

Displays the extension as a pop-up:
<a
href="event:add#ImageViewer.swf#Tulip_field.
jpg">Tulips

overlay title#url #width#hei
ght

Displays document with url as overlay on top of the
textbrowser using title in a window of width x height:

22 / 39

Verb Object Parameter Meaning

<a href="event:overlay#Cows in a
meadow#visuals/Cows_600x450.jpg#630#480">larger
version

imageOverlay title#url none An image version of previous command:
<a
href="event:imageOverlay#Trees#visuals/Water_tree
s.jpg">photo

IMPORTANT: The overlay commands require a relative path to the visuals. The location of the visuals
is not automatically added!

Buttons
1. A button may be used instead of a link. In the document reader a button has the same function as a

link (internal and external) and takes the same value for the href attribute. The advantage of a button
is, that it is more prominent visible.

2. A slide may have one or more custom buttons. A button definition applies only to the current slide. You
can not define default buttons appearing on all slides or a group of slides. The <button/> tag has the
following attributes, all required:

o label (make sure that it fits the width)
o width (in pixels); a button has a fixed height of 22 pixels.
o x: x-position
o y: y-position
o href: this attribute can have the same values as the href in a regular hyperlink (<a>).

23 / 39

Special text

Colored text blocks
Text blocks can be transformed into sidebars or message block by using the attributes for border color and
background color.
The textbrowser can handle two sorts of color definitions:
1. Named web colors (for example Gold, CornSilk, Salmon)
2. Hexadecimal color values (for example #FF0000 for red, and #C0C0C0 for gray).

<text2 x="550" y="540" width="385" height="70" borderColor="DarkKhaki"
backgroundColor="LightYellow">

Text on top of an image
Note that text2 has a higher z-index than text1. So, in case of an overlap, text2 is on top of text1 and, as a
consequence, text2 may shield any underlying hyperlink in text1 (i.e. the link is not clickable). The visuals
have a lower z-index and are below both text blocks (see also FAQ: background image).

Table of contents
1. The use of a table of contents is optional, but recommended.
2. A table of contents is a special slide, having id="toc".
3. The entries are grouped by means of an event-link in a text block:

<text1>
 <p>

 Introduction
 </p>
 ...
</text1>

Notes
1. Xpos're supports only end notes.
2. The use of notes is optional.
3. If used, the notes are to be listed on a special slide using the <note> tag.
4. Each note must have a unique id. The id value may be a mnemonic key word.

<note id="odio">
 <p>[1] Odio montes neque. Luctus placerat blandit metus nisl orci eget tortor leo.
 Donec augue tellus sed dignissim libero.</p>
</note>

5. In the publication text event-links are used to refer to a note:

 [1]

The class "note" makes the in-line reference red (see the CSS).
Numbering the note references is left to the author.

http://en.wikipedia.org/wiki/Web_colors
http://www.w3schools.com/html/html_colors.asp

24 / 39

Bibliography
1. The use of a bibliography is optional.
2. If used it must be on a special slide, just like the end notes.
3. A literature item is embedded in a <ref> tag and must have a unique id. The id value may be

combination of an author name, keyword from the title plus year, or any other combination that
complies with the requirements of an ID.

<ref id="Barish2009">
 <p> Barish, S. and Daley, E. (2009) "Multimedia Scholarship for the Twenty-First
Century",
 <a href="http://net.educause.edu/ir/library/pdf/ffpiu047.pdf"
target="_blank">
 http://net.educause.edu/ir/library/pdf/ffpiu047.pdf

 </p>
</ref>

4. In the publication text (and also in notes) event-links are used to refer to a literature item:

[Barish et al. 2009]

25 / 39

Conversion

From Word to XML
From Flash to HTML

From Word to XML
Usually an author will start from an existing text. The XML text may be created by copying and pasting
paragraph by paragraph, but this method is error prone if the source text contains a lot of mark-up (bold,
italic, etc.). In that case conversion from the Word document to HTML and form HTML to XML may be more
safe. However, the Word HTML text must be cleaned.

Do the following:
1. Save the document in Word as a filtered Web page (HTML). This already removes some superfluous

code.
2. Go to the website Wordoff (http://wordoff.org/).
3. Copy and paste the filtered HTML document into the Wordoff window.
4. Click on button 'Clean up'.
5. Copy the result text into your XML editor
6. Edit and validate the text, and work it up to a valid Xpos're text.

There are, of course, other cleaning programs which can be used as well.

Created with the Personal Edition of HelpNDoc: Easily create PDF Help documents

From Flash to HTML
As said before, the textbrowser can generate two flavors of HTML text: a paged version using slides and
mimicking the Flash version, and a plain HTML version suitable for printing the entire document and for
making an e-book.

Do the following:
1. Open textbrowser and make sure that your are in authoring mode (see 'Preferences').
2. Click on button 'HTML Slides' or 'HTML Plain'.
3. Copy the HTML output from the pop-up window into a WYSIWYG HTML-editor.
4. HTML Plain: you may want to beautify some parts of the HTML text because of differences in rendering

between Flash and a regular web browser. This text relies on RIP-HTML/HTML-plain.css for its
style; this CSS can of course be customized.

5. HTML Slides: you will not see much in the WYSIWYG editor, because this version relies on hidden
div's which are made visible when the navigation button is clicked. So, switch to code view if you want
to inspect the text. Be careful with any changes. This version uses RIP-HTML/RIP-HTML.css, which
may be customized (colors and fonts).

http://wordoff.org/
http://www.helpndoc.com/feature-tour

26 / 39

Appendixes

FAQ
Common errors
HTML tags supported
CSS properties supported
Textbrowser DTD
Publication DTD

FAQ

• Why can I not use the browser's back and forward button to navigate through the slides?

The browser's back and forward button are used to navigate through web pages. The document reader
is an application embedded in a single web page and, therefore, requires its own navigation buttons.

• The size of the document reader is too big for the screen of my small laptop; can I resize it?

1. Consider closing toolbars in order to free some screen space.
2. Switch to full screen mode, currently supported by most browsers.

• Can I resize the text font?

The text font cannot be resized by the user. The size is specified by the author in the CSS-file.
However, you can use the browser's zoom facility to enlarge the text.

• How can I print the enhanced publication?

1. You may print individual slides if you want.
2. To print the complete text, use the plain HTML version.

• How can I make foot notes or end notes?

The document reader cannot display foot notes, only end notes. See topic Special text for details.

• How can I add literature references?

A literature list is a regular slide; text1 (and, if two columns are needed, text2) can be used for this
purpose. See topic Special text for details.

To group several references within one pair of brackets, use a span-tag of class 'ref' to color the entire
set of references.
Example:

[
Berents 1991,
1984;
Van Caenegem 1954
]

This will look like: [Berents 1991, 1984; Van Caenegem 1954]

• How to display a larger version of an image?

The screen space for illustrations is limited. To see more details a larger version may be useful. A
simple way is inserting a regular hyperlink into the caption of the smaller visual; the link text may be

27 / 39

'[large]' or simply a symbol '[+]'. Do not use an inline picture (like a magnifier) as an icon; such an
image is not very well handled in captions because of the scaling. Alternatively, you may use an
extension, such as the Image viewer (see simple demo). If you use a regular hyperlink to an image, do
not forget to add the relative path (e.g. visuals/myImage.jpg).

• How can a link be visible but not clickable?

Check if text2 is not on top of text1 (and thus covering the link), or one of the text blocks is shielding the
caption of the visual, which contains the link. The text blocks have a transparant background and may
be larger than the text displayed. Click on the 'Format'-button and check size and position. Check the
syntax of the hyperlink as well.

• How to link to the enhanced publication?

You can link from any web page to the enhanced publication just as linking to any other web document.

• Can I link to a specific slide?

The document reader can skip the start-up dialog and directly come up with a specific slide (deep
linking). To get the right URL, navigate to that slide and click on button Preferences. The link to that
particular slide is displayed in the pop-up window

• Can a slide have a background image?

To enliven slides with much text (for example two columns) may have a background image. However, a
background image precludes other visuals on the slide. Moreover, because you need a rather large
image, it will increase the preloading time. Use a preprocessed image with dim colors (for example
grey tones or sepia) and position that behind the text. Both, text1 and text2 have a Z-index greater than
the visuals.

• On my Mac, linking to a specific PDF-page does not work in Firefox; what to do?

On a Mac, Firefox may download the PDF in stead of opening it, or, if you have installed a less
advanced plug-in, it will not jump to the right page. Use Safari in that case.

28 / 39

Common errors

Error messages

In most cases, an error message is displayed when the author makes mistakes in the authoring process,
for example when:
• The XML-text is not well formed
• A visual file can not be found
• An internal link has not the appropriate syntax.

Not all user made errors can be trapped. As a rule of the thumb: if something unusual happens, check
the XML code first by validating it against the related DTD.

The following error-situations may occur:

1. Textbrowser.html opens with a complete blank screen

o Textbrowser.swf may be missing.
2. Only the welcome screen is displayed, no preloading 0%

o Some file may be missing, for example RIP-Flash.css
3. Loading starts, but the percentage counter stops somewhere below 100%: Error #2036

(preloading)

o One or more visuals are missing or filenames are misspelled. Filenames are case-sensitive.
4. Clicking on an internal link to an other slide does not produce the right result:

o The event-protocol was not used
o 'event:' was not followed by 'goto' or by an incorrect id.

5. Clicking on an internal link to a note or to a literature reference does not produce the right result:
o Check the event link
o Check the target (note, literature reference)

6. A link to a note or to a literature reference has no distinct color (e.g. red):
o The class-attribute is missing in the <a>-tag.
o The class is not defined in the CSS-file.

7. The 'Table of Contents' button is disabled:
o There is no slide with id="toc".

8. Deep linking - wrong slide or file not found:
o You may not have copied the entire URL as displayed in the Preference window.

29 / 39

HTML tags supported

Flash supports only a subset of the HTML tags and these tags are also recognized in an XML text. In
addition it comes with a non-HTML-tag: <textformat>.

Tag Attributes Remarks

<a> href • External link: an absolute or relative URL
• Internal link: "event:verb#object#parameter"

 target _blank, _parent, _top, _self

 Renders text as bold.

 Line break. Because the text is XML,
 can not be used.

 color Only hexadecimal color (#FFFFFF) values are supported.

 face Specifies the name of the font to use. You can specify a list of
comma-delimited font names, in which case Flash Player selects the first
available font. If the specified font is not installed on the user's computer
system or isn't embedded in the SWF file, Flash Player selects a substitute
font.

 size Specifies the size of the font. You can use absolute pixel sizes, such as 16 or
18, or relative point sizes, such as +2 or -4.

 src Specifies the URL to an image or SWF file. This attribute is required; all other
attributes are optional. Formats: JPEG, GIF, PNG, and SWF files.

 width The width of the image, SWF file in pixels.

 height The height of the image, SWF file in pixels.

 align Specifies the horizontal alignment of the embedded image within the text
field. Valid values are left and right. The default value is left.

 hspace Specifies the amount of horizontal space that surrounds the image where no
text appears. The default value is 8.

 vspace Specifies the amount of vertical space that surrounds the image where no
text appears. The default value is 8.

<i> The <i> tag displays the tagged text in italics. An italic typeface must be
available for the font used.

 This tag places a bullet in front of the text that it encloses.
Note: Because Flash Player does not recognize ordered and unordered list
tags (and , they do not modify how your list is rendered. All lists are
unordered and all list items use bullets.

<p> align align: Specifies alignment of text within the paragraph; valid values are:
left, right, justify, and center.

 class Specifies a CSS style class defined in the CSS-file.

 class The tag is available only for use with CSS text styles. It supports the
class attribute.

<textformat> blockindent Specifies the block indentation in points.

 indent Specifies the indentation from the left margin to the first character in the
paragraph. Both positive and negative numbers are acceptable.

 leading Specifies the amount of leading (vertical space) between lines. Both positive
and negative numbers are acceptable.

30 / 39

Tag Attributes Remarks

 leftmargin Specifies the left margin of the paragraph, in points.

 rightmargin Specifies the right margin of the paragraph, in points.

 tabstops Specifies custom tab stops as an array of non-negative integers;

<u> Underlines a text.

The following HTML entities are recognized:

< <

> >

& &

" "

' '

31 / 39

CSS properties supported

Flash supports the following CSS properties:

Property Usage and supported values

color Only hexadecimal color values are supported. Named colors (such as blue) are not
supported by Flash, but can be used in tags of the document reader. Colors in the CSS
are written in the following format: #FF0000.

display Supported values are:
• inline
• block
• none

font-family A comma-separated list of fonts to use, in descending order of desirability. Any font
family name can be used. If you specify a generic font name, it is converted to an
appropriate device font. The following font conversions are available:
• mono is converted to typewriter
• sans-serif is converted to _sans
• serif is converted to _serif.

font-size Only the numeric part of the value is used. Units (px, pt) are not parsed; pixels and points
are equivalent.

font-style Recognized values are:
• normal
• italic

font-weight Recognized values are:
• normal
• bold

kerning Recognized values are true and false. Kerning is supported for embedded fonts only.
Certain fonts, such as Courier New, do not support kerning. The kerning property is only
supported in SWF files created in Windows, not in SWF files created on the Macintosh.
However, these SWF files can be played in non-Windows versions of Flash Player and
the kerning still applies.

leading The amount of space that is uniformly distributed between lines. The value specifies the
number of pixels that are added after each line. A negative value condenses the space
between lines. Only the numeric part of the value is used. Units (px, pt) are not parsed;
pixels and points are equivalent.

letter-spacing The amount of space that is uniformly distributed between characters. The value
specifies the number of pixels that are added after each character. A negative value
condenses the space between characters. Only the numeric part of the value is used.
Units (px, pt) are not parsed; pixels and points are equivalent.

margin-left Only the numeric part of the value is used. Units (px, pt) are not parsed; pixels and points
are equivalent.

margin-right Only the numeric part of the value is used. Units (px, pt) are not parsed; pixels and points
are equivalent.

text-align Recognized values are:
• left
• center
• right
• justify.

32 / 39

Property Usage and supported values

text-decoration Recognized values are:
• none
• underline.

text-indent Only the numeric part of the value is used. Units (px, pt) are not parsed; pixels and points
are equivalent.

33 / 39

Textbrowser DTD
<?xml version="1.0" encoding="UTF-8"?>
<!-- XPOS'RE 2.0 - 29 March 2012
== DTD for TEXTBROWSER.HTML ==
Unless otherwise indicated files are expected in the same directory as Textbrowser
itself.
-->

<!--
========================
 I. APPLICATION DATA
========================
-->

<!ELEMENT appData (mode, urlSite?, urlText, urlPDF?, datePDF?, urlCSS, imagePath,
welcomeText,
scrollDelta, measuringHelp, useOverlay, templates, htmlTemplates)>

<!-- Mode of Textbrowser: effects default buttonbar (to be changed in Preferences:
1. authoring: all buttons
2. reading: only buttons required for reading are visible
3. protected: no switch to authoring mode through buttonbar
-->
<!ELEMENT mode (#PCDATA) >

<!-- Url of the website where the text will be published -->
<!ELEMENT urlSite (#PCDATA) >

<!-- File name of publication text -->
<!ELEMENT urlText (#PCDATA) >

<!-- Optional url of PDF version of the publication (not necessarily in same
directory) -->
<!ELEMENT urlPDF (#PCDATA) >

<!-- Optional date of the PDF file -->
<!ELEMENT datePDF (#PCDATA) >

<!-- Cascading stylesheet -->
<!ELEMENT urlCSS (#PCDATA) >

<!-- Subdirectory where the images are; include '/' at the end -->
<!ELEMENT imagePath (#PCDATA) >

<!-- Text displayed at start-up during preloading -->
<!ELEMENT welcomeText (p+) >

<!-- Number of lines scrolled in a single step by scroll buttons; default: 10 -->
<!ELEMENT scrollDelta (#PCDATA)>

<!--Help text on | off when measuring tool is displayed -->
<!ELEMENT measuringHelp (#PCDATA) >

<!-- Use overlay on | off with: href="event:overlay#title#url" -->
<!ELEMENT useOverlay (#PCDATA) >

<!--
========================
 II. AUTHORING TEMPLATES
========================
-->
<!ELEMENT templates (template)+ >

34 / 39

<!ELEMENT template (text1?, text2?, visuals?)>
<!ATTLIST template
 id ID #REQUIRED>

<!ELEMENT text1 (#PCDATA) >
<!ATTLIST text1
 x CDATA #IMPLIED
 y CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED>

<!ELEMENT text2 (#PCDATA) >
<!ATTLIST text2
 x CDATA #IMPLIED
 y CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED>

<!ELEMENT visuals (#PCDATA) >
<!ATTLIST visuals
 x CDATA #IMPLIED
 y CDATA #IMPLIED
 size CDATA #IMPLIED
 orientation CDATA #IMPLIED> <!-- horizontal | vertical -->

<!--
========================
 III. CONVERSION TEMPLATES
========================
-->
<!ELEMENT htmlTemplates (htmlTemplate)+ >
<!ELEMENT htmlTemplate (html)>
<!ATTLIST htmlTemplate
 id ID #REQUIRED>

<!ELEMENT html (head, body) >
<!ELEMENT head (title, (script | link)*) >
<!ELEMENT title (#PCDATA) >

<!ELEMENT script (#PCDATA)>
<!ATTLIST script
 type CDATA #REQUIRED
 src CDATA #IMPLIED>

<!ELEMENT link EMPTY >
<!ATTLIST link
 href CDATA #REQUIRED
 rel CDATA #IMPLIED
 type CDATA #IMPLIED
 media CDATA #IMPLIED >

<!ELEMENT body (#PCDATA | map | div | button)*>
<!ATTLIST body
 onload CDATA #IMPLIED
 onkeydown CDATA #IMPLIED>

<!ELEMENT map (area)+ >
<!ATTLIST map
 name CDATA #REQUIRED>

<!ELEMENT area EMPTY>
<!ATTLIST area
 href CDATA #REQUIRED

35 / 39

 shape CDATA #REQUIRED
 coords CDATA #REQUIRED
 title CDATA #REQUIRED>

<!ELEMENT div (#PCDATA | p | img | div | select | button | a | h1 | small)*>
<!ATTLIST div
 id CDATA #REQUIRED
 class CDATA #IMPLIED>

<!ELEMENT select (#PCDATA) >
<!ATTLIST select
 id ID #REQUIRED
 onchange CDATA #IMPLIED>

<!--
=========================
 HTML AND FLASH TAGS
 as shared by all sections above
=========================
-->
<!ELEMENT h1 (#PCDATA | small | br)* >
<!ELEMENT h2 (#PCDATA | small | br)* >
<!ELEMENT h3 (#PCDATA | small | br)* >

<!ELEMENT p (#PCDATA | b | u | i | br | font | span | textformat | input)*>

<!ATTLIST p
 align (left | right | justify | center) #IMPLIED
 class CDATA #IMPLIED>

<!ELEMENT b (#PCDATA | i | u)* >
<!ELEMENT i (#PCDATA | b | u)* >
<!ELEMENT u (#PCDATA | b | i)*>
<!ELEMENT br EMPTY >

<!ELEMENT font (#PCDATA)>
<!ATTLIST font
 color CDATA #IMPLIED
 face CDATA #IMPLIED
 size CDATA #IMPLIED>

<!ELEMENT span (#PCDATA | b | u | i | br)*>
<!ATTLIST span
 class CDATA #REQUIRED>

<!ELEMENT a (#PCDATA | br | i | b | u | img)*>
<!ATTLIST a
 href CDATA #REQUIRED
 class CDATA #IMPLIED
 target CDATA #IMPLIED>

<!ELEMENT img EMPTY >
<!ATTLIST img
 id ID #IMPLIED
 src CDATA #REQUIRED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 vspace CDATA #IMPLIED
 hspace CDATA #IMPLIED
 align CDATA #IMPLIED
 usemap CDATA #IMPLIED
 border CDATA #IMPLIED
 title CDATA #IMPLIED>

36 / 39

<!ELEMENT small (#PCDATA) >

<!ELEMENT button (#PCDATA)>
<!ATTLIST button
 id ID #REQUIRED
 onclick CDATA #REQUIRED
 title CDATA #IMPLIED>

<!ELEMENT input (#PCDATA) >
<!ATTLIST input
 type CDATA #REQUIRED
 id ID #REQUIRED>

<!-- Proprietary Flash tags -->
<!ELEMENT textformat EMPTY>
<!ATTLIST textformat
 blockindent CDATA #IMPLIED
 indent CDATA #IMPLIED
 leading CDATA #IMPLIED
 leftmargin CDATA #IMPLIED
 rightmargin CDATA #IMPLIED
 tabstops CDATA #IMPLIED>

37 / 39

Publication DTD
<?xml version="1.0" encoding="UTF-8"?>
<!-- XPOS'RE 2.0 - 29 March 2012
== DTD for XPOS'RE PUBLICATIONS ==
Note:
- attribute values of x, y, width, height, size in pixels
- color: either #code or web named color
-->

<!-- == -->
<!-- Entities -->
<!ENTITY % textContent "(p | ul | h1 | h2 | h3 | h4 | h5 | h6 | br | textformat)*"
>
<!ENTITY % pContent "(#PCDATA | b | i | u | a | img | br | span | textformat | font)*">
<!ENTITY % capContent "(#PCDATA | b | i | u | a | br | span | textformat | font)*"
>
<!ENTITY % size "x?, y?, width?, height?" >
<!ENTITY % size_visual "x?, y?, width?" >
<!-- == -->

<!-- Publication document structure -->
<!ELEMENT doc (meta, slides) >

<!-- Metadata -->
<!ELEMENT meta (mainTitle, author, creator?, issued?, modified?, description?)>
<!ELEMENT mainTitle (#PCDATA) > <!-- publication title -->
<!ELEMENT author (#PCDATA) > <!-- first name (or initials) and last name -->
<!ELEMENT creator (#PCDATA) > <!-- e.g. the editor of the text -->
<!ELEMENT issued (#PCDATA) > <!-- date; any format allowed -->
<!ELEMENT modified (#PCDATA) > <!-- date; any format allowed -->
<!ELEMENT description (%textContent;) >

<!-- Slides -->
<!ELEMENT slides (slide+)>
<!ELEMENT slide (pdfPage?, title, visual*, button*, text1?, text2?, more?)>
<!ATTLIST slide
 id ID #REQUIRED
 template CDATA #IMPLIED><!-- id of one of the templates defined in
Textbrowser.xml -->

<!ELEMENT pdfPage (#PCDATA) ><!-- number of the PDF page related to the current slide
-->
<!ELEMENT title %pContent; ><!-- slide title -->

<!-- Visuals -->
<!ELEMENT visual (url, onClick?, cap?, creator?) ><!-- attributes only required if
format different from template -->
<!ATTLIST visual
 x CDATA #IMPLIED
 y CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 border CDATA #IMPLIED><!-- true | false -->

<!ELEMENT url (#PCDATA) ><!-- url of the image -->
<!ELEMENT onClick EMPTY>
<!ATTLIST onClick
 href CDATA #REQUIRED><!-- typically an event-link -->
<!ELEMENT cap %capContent;>

<!-- Buttons -->
<!ELEMENT button EMPTY>

38 / 39

<!ATTLIST button
 href CDATA #REQUIRED
 label CDATA #REQUIRED
 x CDATA #REQUIRED
 y CDATA #REQUIRED
 width CDATA #REQUIRED>

<!-- Texts -->
<!ELEMENT text1 (%textContent; | note | ref)*>
<!ATTLIST text1
 x CDATA #IMPLIED
 y CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 borderColor CDATA #IMPLIED
 backgroundColor CDATA #IMPLIED>

<!ELEMENT text2 (%textContent; | note | ref)*>
<!ATTLIST text2
 x CDATA #IMPLIED
 y CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 borderColor CDATA #IMPLIED
 backgroundColor CDATA #IMPLIED>

<!ELEMENT ref %textContent; ><!-- a biblographic entry referred to through
<!ATTLIST ref
 id ID #REQUIRED>

<!-- HTML tags -->
<!ELEMENT h1 %pContent;>
<!ELEMENT h2 %pContent;>
<!ELEMENT h3 %pContent;>
<!ELEMENT h4 %pContent;>
<!ELEMENT h5 %pContent;>
<!ELEMENT h6 %pContent;>

<!ELEMENT p %pContent; >
<!ATTLIST p
 align (left | right | justify | center) #IMPLIED
 class CDATA #IMPLIED>

<!ELEMENT b (#PCDATA | i | u | a | font)* >
<!ELEMENT i (#PCDATA | b | u | a | font)* >
<!ELEMENT u (#PCDATA | b | i | font)*>
<!ELEMENT br EMPTY >
<!ATTLIST br
 class CDATA #IMPLIED>
<!ELEMENT ul (li, br?)+ ><!-- ordered lists are not supported by Flash -->
<!ELEMENT li %pContent; >

<!ELEMENT font (#PCDATA)>
<!ATTLIST font
 color CDATA #IMPLIED
 face CDATA #IMPLIED
 size CDATA #IMPLIED>

<!ELEMENT a (#PCDATA | br | i | b | u | img)*>
<!ATTLIST a
 href CDATA #REQUIRED
 class CDATA #IMPLIED

39 / 39

 target CDATA #IMPLIED>

<!ELEMENT img EMPTY ><!-- image embedded in the text -->
<!ATTLIST img
 src CDATA #REQUIRED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 vspace CDATA #IMPLIED
 hspace CDATA #IMPLIED
 align CDATA #IMPLIED>

<!ELEMENT span %pContent;>
<!ATTLIST span
 class CDATA #REQUIRED>

<!-- Proprietary Flash tags -->
<!ELEMENT textformat %pContent;>
<!ATTLIST textformat
 blockindent CDATA #IMPLIED
 indent CDATA #IMPLIED
 leading CDATA #IMPLIED
 leftmargin CDATA #IMPLIED
 rightmargin CDATA #IMPLIED
 tabstops CDATA #IMPLIED>

<!-- Special texts -->
<!ELEMENT more %textContent; ><!-- continuation text, referred to through More... -->

<!ELEMENT note %textContent; ><!-- (foot)note referred to through <a class="note"
href="event:note#...-->
<!ATTLIST note
 id ID #REQUIRED>

	Introduction
	Document reader
	Slide as basic unit
	Input and output
	Extending the functionality
	How to use Xpos're
	Sustainability
	Getting started
	User interface

	Authoring
	Planning
	Defining the publication
	Adding a slide
	Links and buttons
	Special text

	Conversion
	From Word to XML
	From Flash to HTML

	Appendixes
	FAQ
	Why can I not use the browser's back and forward button to navigate through the slides?
	The browser's back and forward button are used to navigate through web pages. The document reader is an application embedded in a single web page and, therefore, requires its own navigation buttons.
	The size of the document reader is too big for the screen of my small laptop; can I resize it?
	Can I resize the text font?
	How can I print the enhanced publication?
	How can I make foot notes or end notes?
	How can I add literature references?
	How to display a larger version of an image?
	How can a link be visible but not clickable?
	How to link to the enhanced publication?
	Can I link to a specific slide?
	Can a slide have a background image?
	On my Mac, linking to a specific PDF-page does not work in Firefox; what to do?

	Common errors
	HTML tags supported
	CSS properties supported
	Textbrowser DTD
	Publication DTD

